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SPECTRAL PROBLEM FOR SHELLS WITH FLUID

UDC 539.3E. P. Kligman, I. E. Kligman, and V. P. Matvienko

Variational eigenvalue equations describing vibrations of orthotropic shells containing an ideal in-
compressible fluid are obtained. The vibration frequencies are assumed to be small, which makes it
possible to use linear equations and to consider the boundary of the wet surface of the shell to be
unchanged. The equations of anisotropic shells are based on the linear relations of multifield theory,
which allows to obtain a more accurate model of anisotropic shells that satisfies the conditions of the
finite-element method. The fluid flow is considered irrotational and is described using the Laplace
equation. A finite-element algorithm is designed to determine the natural frequencies and modes of
vibrations of an arbitrary multilayer orthotropic shell of revolution which is partially filled with an
ideal incompressible fluid.
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Introduction. The presence of tanks partially filled with fluid is an integral part of many structures of
various applications. These are various reservoirs, fuel tanks, etc. Recently, there has been an increased use of
composite materials with anisotropic mechanical properties in the manufacture of such structures. The filling of a
structure with fluid changes its dynamic properties significantly. Therefore, there is an urgent need to study the
vibrations of shells containing fluids in internal cavities.

Equation of Motion for a Shell of Revolution. Anisotropic composite materials of low shear rigidity
are widely used to manufacture shells. The most adequate model for the behavior of such shells is six-modal
theory based on multifield hypotheses, in which assumptions on displacement distributions are supplemented by
independent assumptions on transverse strains [1].

Let us consider an orthotropic shell of revolution in a coordinate system attached to the surface Ω (Fig. 1).
According to the adopted model, the displacement vector components of the points of the shell are written in the
global cylindrical coordinates r, x, ϕ as follows:

Ux(s, ϕ, z) = ux(s, ϕ) + z(ψ1(s, ϕ) sin θ − χ(s, ϕ) cos θ),

Ur(s, ϕ, z) = ur(s, ϕ) + z(ψ1(s, ϕ) cos θ + χ(s, ϕ) sin θ), Uϕ(s, ϕ, z) = uϕ(s, ϕ) + zψ2(s, ϕ).
(1)

Here s and ϕ are the Gaussian coordinates of the surface of reference, z is the normal coordinate, θ is the slope
of the normal to the coordinate surface to the axis of rotation of the shell, ur, ux, and uϕ are the displacements
of the points of the coordinate surface, and ψ1 and ψ2 are the angles of rotation and χ is the elongation of the
element normal to the surface. From the decomposition (1) using the kinematic Cauchy relations, we obtain the
strain-tensor components 2eij = (Ui,j + Uj,i). The components e13 and e23 calculated from these formulas do not
ensure satisfaction of the boundary conditions on the stresses on the boundary surfaces of the shell and introduce
a certain error to the calculation results.
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Fig. 1. Geometry of the shell.

Therefore, according to the concept adopted in [1], independent hypotheses on transverse strains are formu-
lated in addition to the kinematic hypotheses (1). We shall seek transverse shear strains in the form

2eα3(s, ϕ, z) = 4(z/h)(1 − z/h)γα3(s, ϕ) (α = 1, 2), (2)

where h is the shell thickness. Here the inner surface of the shell is chosen as the surface of reference. In our case,
this form satisfies the condition of zero strains and shear stresses on the boundary surfaces of the shell, i.e.,

eα3(s, ϕ, 0) = eα3(s, ϕ, h) = 0, τα3(s, ϕ, 0) = τα3(s, ϕ, h) = 0 (α = 1, 2).

The stress-tensor components τij obey Hooke’s law for orthotropic media. The strain factor γα3 is determined from
the condition of the least standard deviation of the transverse shear strain along the shell thickness obtained from
the kinematic hypotheses (1) and the transverse strain hypothesis (2):

min

h∫

0

{
4
z

h

(
1 − z

h

)
γα3(s, ϕ) − (Ui,j + Uj,i)

}2

dz (α = 1, 2).

To derive the equation of motion for the shell, we use the principle of possible displacements and supplement
it, according to the d’Alembert principle, by the work of inertial forces

δ(E −A− T ) = 0. (3)

Here E is the potential strain energy, A is the work of external forces, and T is the work of inertial force. Let us
consider the variation in the potential strain energy of the system

δE =
∫

V

τijδeij dV =

L∫

0

2π∫

0

h∫

0

τij δeij dz r dϕ ds, (4)

where V is the volume of the shell body and L is the length of the shell meridian. Here by virtue of the adopted
hypotheses, the stress- and strain-tensor components bear a known relation to the coordinate z. Integrating over
the thickness in (4), we obtain

δE =

L∫

0

2π∫

0

{T }tδ{ε} r dϕ ds, (5)

where {ε} = {ε11, ε12, ε22, ε13, ε23, ε33,κ11,κ22,κ12,κ21,κ13,κ23}t and {T } = {T11, T12, T22, T13,T23, T33,M11,

M22,M12,M21,M13,M23}t are the generalized-strain and -stress vectors, εij is the tension and shear, κij is the
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bending and torsion of the coordinate surface, Tij are the tensile and shear forces, and Mij are the bending and tor-
sional moments reduced to the coordinate surface. The generalized-stress vector is related to the generalized-strain
vector by Hooke’s law in the form

{T } = [D]{ε},
where [D] is the symmetric rigidity matrix [2].

Let us write the variation in the work of inertial forces:

δT =

L∫

0

2π∫

0

h∫

0

{U}tρ δ{Ü} dz r dϕ ds.

Here the displacement vector {U} is given by components in the global coordinates by decomposition (1) and ρ is
the density of the shell material. Integration over the thickness yields

δT =

L∫

0

2π∫

0

{u}t[ρ] δ{ü} r dϕ ds, (6)

where {u} = {ur, ux, uϕ, ψ1, χ, ψ2}t is the generalized-displacement vector and [ρ] is the density matrix.
Let the shell considered be filed with an ideal fluid. Therefore, of the external forces we shall take into

account only the normal pressure pn. In this case, the work of external forces in (3) is defined by the work of
pressure for the normal displacement of the inner surface of the shell wn:

δA =

L∫

0

2π∫

0

pn δwn r dϕ ds =

L∫

0

2π∫

0

pn δ(ur sin θ − ux cos θ) r dϕ ds. (7)

In the case of harmonic excitation for shells of revolution, the load and the required displacements can be
written as

pn(s, ϕ, t) = eiωt
∑

k

pk
n(s) cos kϕ,

Ur = eiωt
∑

k

Uk
r cos kϕ, Ux = eiωt

∑
k

Uk
x cos kϕ, Uϕ = eiωt

∑
k

Uk
ϕ sin kϕ

or for the generalized-displacement vector,

{u(s, ϕ, t)} = eiωt
∑

k

{
uk

r (s) cos kϕ, uk
x(s) cos kϕ, uk

ϕ(s) sin kϕ, ψk
1 (s) cos kϕ, χk(s) cos kϕ, ψk

2 (s) sin kϕ
}t

. (8)

Substituting (8) into (3) with allowance for (5)–(7) and integrating over the circumferential coordinate, we obtain
the following variational equation for the kth harmonic:

L∫

0

δ{ε}t
k[D]{ε}k r ds− ω2

L∫

0

δ{u}t
k[ρ]{u}k r ds−

L∫

0

δ(uk
r sin θ − uk

x cos θ)pk
n r ds

=

L∫

0

δ{ε}t
k[D]{ε}k r ds− ω2

L∫

0

δ{u}t
k[ρ]{u}k r ds−

L∫

0

δ{u}t
k{L}pk

n r ds = 0, (9)

where {u}k is the kth harmonic of the generalized-displacement vector; {L} = {sin θ,− cos θ, 0, 0, 0, 0}t is the
expanded vector of the direction cosines of the normal to the shell surface.

Equation (9) is in essence the variational equation of forced steady-state vibrations of the shell of revolution
loaded by a pressure which varies harmonically.

Equation of Motion for Ideal Fluid. We consider the case where the shell of revolution is partially
filled with an ideal incompressible fluid. It is assumed that the vibrations of the shell are small and the fluid flow
is irrotational in a stationary coordinate system. Let the axis of rotation x be directed vertically upward (Fig. 2).
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Fig. 2. Shell with fluid.

Then, the free surface of the fluid σ is described by the equation x = const, and the lateral surface S is determined
by the wet part of the inner surface of the shell Ω. During motion of the system, the points belonging to the
inner surface of the shell perform the displacements ux, ur, and uϕ and the free-surface boundary occupies the
position σ∗. In this case, the fluid pressure has the dynamic component p(x, r, ϕ, t).

By virtue of the above assumption on the smallness of the vibration frequency, the boundary of the wet
surface of the shell can be considered unchanged during its motion. We denote by S∗ the inner surface of the shell
occupied by the fluid during motion. In the case of small vibrations, the boundary conditions can be extended
from the surfaces S∗ and σ∗ to their neighboring surfaces S and σ. Then, the pressure p should satisfy the Laplace
equation [3]

∇2p = 0 (10)

with the boundary conditions

∂p

∂n
= −ρ∗ ∂

2w

∂t2
on S,

∂p

∂n
+

1
g

∂2p

∂t2
= 0 on σ. (11)

Here ρ∗ is the fluid density, n is the unit normal vector to the fluid surface, w is the normal component of the
displacement vector, and g is the acceleration of gravity.

Equation (10) with boundary conditions (11) describes the dynamic equilibrium of the fluid in the case of
disturbance of its lateral surface S. Let us consider the case where the normal displacement of the lateral surface w
is a harmonic function of time:

w(s, ϕ, t) = w̃(s, ϕ) eiωt .

We seek a stationary solution of Eq. (10) of the form

p(x, r, ϕ, t) = p̃(x, r, ϕ) eiωt .

Then, the peak pressure values should satisfy the equation

∇2p̃ = 0 (12)

and the boundary conditions

∂p̃

∂n
− ρ∗ω2w̃ = 0 on S,

∂p̃

∂n
− ω2

g
p̃ = 0 on σ. (13)

The variational formulation of the problem involves a consideration of the functional

J =
1
2

∫ ∫ ∫

V

(∇p̃)2 dV − ω2ρ∗
∫ ∫

S

w̃p̃ dS − ω2

2g

∫ ∫

σ

p̃2 dσ,
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Fig. 3. Finite elements of the shell and fluid.

which takes a stationary value for the pressure p̃ which is a solution of problem (12), (13) [4]. A necessary condition
for the stationarity of the functional J is the vanishing of its first variation:

δJ =
∫ ∫ ∫

V

∇p̃ δ(∇p̃) dV − ω2ρ∗
∫ ∫

S

w̃ δp̃ dS − ω2

g

∫ ∫

σ

p̃ δp̃ dσ = 0. (14)

Let us consider the case where the normal displacement of the boundary w̃ can be represented by a Fourier
series in the circumferential coordinate:

w̃(s, ϕ) =
∑

k

{L}t{u}k cos kϕ. (15)

Here {u}k and {L} are the displacement vectors and the vectors of the direction cosines of the normal [formulas (8)
and (9)]. We seek a solution of the variational equation (14) in the form

p̃(x, r, ϕ) =
∑

k

pk(x, r) cos kϕ. (16)

Taking into account (15) and (16), we write the variational equation (14) in cylindrical coordinates and integrate
it over ϕ. In this case, the system is split into independent equations for each circumferential harmonic number k∫

x

∫

r

(∂pk

∂r
δ
∂pk

∂r
+
∂pk

∂x
δ
∂pk

∂x
+ k2pk δpk

)
r dr dx

− ω2ρ∗
sl∫

0

(uk
r sin θ − uk

x cos θ) δpk r ds− ω2

g

R∫

0

pk δpk r dr = 0. (17)

Here sl is the boundary of the shell segment wet with the fluid (see Fig. 2) and R is the radius of the fluid free
surface. Equation (17) can be written in matrix form

∫

x

∫

r

δ{γ}t
k{γ}k r dr dx− ω2

g

R∫

0

δpk pk r dr − ω2ρ∗
sl∫

0

δpk{L}t{u}k r ds = 0, (18)

where {γ} = {∂pk/∂x, ∂pk/∂r, kpk/r}t is the pressure gradient.
Thus, we obtained the variational problem of steady-state forced vibrations of the fluid under a small

harmonic change in the tank shape.
Natural Vibrations of Shells Partially Filled with Fluid. Equations (9) and (18) are the variational

equations of forced vibrations of a shell and fluid, respectively, for the kth circumferential harmonic of the Fourier
series expansion of the solution in the circumferential coordinate. In the contact zone between these bodies, the
normal displacements of points of the shell and the pressure acting on the shell coincide with the normal displacement
of the fluid boundary and the pressure arising in it, i.e., wn = w and pn = p. Combining these two equations,
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Fig. 4. Natural frequencies of shell vibrations versus fluid level for the 3rd and 4th circumferential
harmonics: the points refer to the experimental data of [5] for the 3rd harmonic (1) and the
4th harmonic (2); the curves refer to calculations for the 3rd harmonic (solid curve) and the 4th
harmonic (dashed curve).

Fig. 5. Natural frequencies of shell vibrations versus fluid level for the 5th and 6th circumferential
harmonics: the points refer to the experimental data of [5] for the 5th harmonic (1) and the 6th
harmonic (2); the curves refer to calculations for the 5th harmonic (solid curve) and 6th harmonic
(dashed cure).

we obtain a homogeneous system that can be interpreted as the spectral problem of natural vibrations of a shell
partially filled with an ideal fluid. This problem was solved using a finite element method. For this, the region
occupied by the fluid was partitioned into triangular finite elements and the shell was represented by one-dimensional
curvilinear ring-type finite elements [2] with a quadratic approximation. The elements on the contact boundary
between the shell and the fluid were matched with each other (Fig. 3).

The displacements ur, ux, and uϕ and the pressure p are approximated by quadratic polynomials and ψ1,
ψ2, and χ by first-order polynomials (here and below, the subscript k is omitted). We assume that {V } and {q} are
the nodal-parameter vectors for the shell and fluid, respectively, [N ] and [n] are the shape-function matrices for the
shell and fluid, respectively, and [b] is the pressure-gradient matrix. Then, we can write {u} = [N ]{V }, p = [n]{q},
and {γ} = [b]{q}. Formally, combining the equations of the shell and the fluid, we obtain the following homogeneous
system of linear algebraic equations:

([K∗] + [K] − [T ]− ω2([M ] + g−1[R])){W} = 0. (19)

This equation uses the following notation: {W} = {V, q}t is the generalized vector of the nodal parameters,

[T ] =
[

0 ω2ρ∗[P ]t

[P ] 0

]
is the matrix of the mutual effect of the fluid and the shell, [K] and [M ] are the rigidity

and mass matrices of the shell, [P ] =
NEc∑
e=1

∫

S

[N ]t[L]t[n] r ds is the matrix of the effect of the fluid on the shell,

[K∗] =
NEl∑
e=1

∫

x

∫

r

[b]t[b] r dr dx is the gravitational-rigidity matrix of the fluid, [R] =
NEsurf∑

e=1

∫

r

[n]t[n] r dr is the inertia

matrix of the fluid free surface, NEc is the number of shell elements adjoining the fluid, NEl is the number of fluid
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elements, and NEsurf is the number of elements belonging to the fluid free surface. The matrices included in (19)
are matched to the structure of the generalized nodal-parameter vector {W}.

Equation (19) is treated as a generalized eigenvalue problem, where ω is the natural frequency and {W} is
the natural mode of vibration.

This algorithm was used to develop a program for calculating the natural frequencies and modes of vibrations
for an arbitrary orthotropic shell of revolution of low shear rigidity which is partially filled with an ideal fluid.

Natural Vibrations of Shells Filled with Fluid. To test the approach proposed here and the program
developed, we calculated vibrations of a full-scale shell with a fluid. The dependence of the lowest natural frequencies
of shell vibrations ω on the fluid level was determined. The first natural vibration frequencies correspond to modes
with the formation of four, three, five and six waves in the circumferential direction and one half-wave in the
longitudinal direction (the first modes of the 4th, 3rd, 5th, and 6th circumferential harmonics). The calculation
results for a shell with a fluid were compared with the experimental results of [5] on the natural frequencies and
modes of small vibrations of a cylindrical shell of radius 0.1 m, length 0.58 m, and constant thickness h = 0.0006 m
which was set upright and clamped at both ends. The shell was made of OT4 titanium alloy with an elastic modulus
E = 0.98 · 105 MPa, a density ρ = 4550 kg/m3, and Poisson’s constant ν = 0.3. During the experiment, the service
water level in the shell was varied from 0 to 100%.

Figures 4 and 5 gives curves of the natural shell vibration frequencies versus the relative fluid level η in the
shell for various circumferential harmonics. As one can see from the curves, the calculation results are in good
qualitative and satisfactory quantitative agreement with the experimental data. Some excess of the calculated
frequencies over the experimental data can be explained by the fact that complete clamping of the shell ends is
difficult to implement in practice.

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-96028 RFBR-
URAL).
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